15 research outputs found

    Running Genetic Algorithms in the Edge: A First Analysis

    Get PDF
    Nowadays, the volume of data produced by different kinds of devices is continuously growing, making even more difficult to solve the many optimization problems that impact directly on our living quality. For instance, Cisco projected that by 2019 the volume of data will reach 507.5 zettabytes per year, and the cloud traffic will quadruple. This is not sustainable in the long term, so it is a need to move part of the intelligence from the cloud to a highly decentralized computing model. Considering this, we propose a ubiquitous intelligent system which is composed by different kinds of endpoint devices such as smartphones, tablets, routers, wearables, and any other CPU powered device. We want to use this to solve tasks useful for smart cities. In this paper, we analyze if these devices are suitable for this purpose and how we have to adapt the optimization algorithms to be efficient using heterogeneous hardware. To do this, we perform a set of experiments in which we measure the speed, memory usage, and battery consumption of these devices for a set of binary and combinatorial problems. Our conclusions reveal the strong and weak features of each device to run future algorihms in the border of the cyber-physical system.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R (http://moveon.lcc.uma.es), TIN2016-81766-REDT (http://cirti.es), TIN2017-88213-R (http://6city.lcc.uma.es), the Ministry of Education of Spain (FPU16/02595

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    A benchmarking model for sensors in smart environments

    No full text
    In smart environments, developers can choose from a large variety of sensors supporting their use case that have specific advantages or disadvantages. In this work we present a benchmarking model that allows estimating the utility of a sensor technology for a use case by calculating a single score, based on a weighting factor for applications and a set of sensor features. This set takes into account the complexity of smart environment systems that are comprised of multiple subsystems and applied in non-static environments. We show how the model can be used to find a suitable sensor for a use case and the inverse option to find suitable use cases for a given set of sensors. Additionally, extensions are presented that normalize differently rated systems and compensate for central tendency bias. The model is verified by estimating technology popularity using a frequency analysis of associated search terms in two scientific databases

    Adapting distributed evolutionary algorithms to heterogeneous hardware

    No full text
    Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases.Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alba, Enrique. Universidad de Målaga; Españ

    Die DC in der klinischen Diagnostik

    No full text

    Growth and Development

    No full text
    corecore